
[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 1

Computer and Communication Systems
(Lehrstuhl für Technische Informatik)

Vehicular Networks [C2X]

Part 1: In-Car Networking

Protocols: K-Line, CAN, and LIN

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 2

The K-Line Bus

The K-Line Bus
Industry standard of the 80s, much later standardized as ISO 9141
Numerous variants exist (esp. upwards of Link Layer)
Lecture focuses on ISO 14230: The KWP 2000 (Keyword Protocol)
Specifies Physical and Link layers
Bidirectional bus, communicating over 1 wire (the K Line)

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 3

The K-Line Bus

The K-Line Bus (contd.)
Optional: additional unidirectional L Line

Allows mixed networks (using only K Line / using both K+L Line)

Mostly used for connecting ECU⬄Tester, seldom ECU ⬄ ECU
Logic levels are relative to on board voltage (< 20% and > 80%)
Bit transmission compatible to UART (Universal Asynchronous
Receiver Transmitter): 1 start bit, 8 data bits, 1 stop bit, optional
parity bit
Bit rate 1.2 kBit/s ... 10.4 kBit/s

Dependent on ECU, not Bus
Master must be able to handle multiple bit rates

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 4

The K-Line Bus

Protocol
Connection establishment (2 variants)

Fast init (100 ms, Bitrate always 10,4 kBit/s)
– Master sends Wake Up pattern (25 ms low, 25 ms pause)
– Master sends Start Communication Request, includes dest address
– ECU answers with keyword, after max. 50 ms
– Keyword encodes supported protocol variants

takes values from 2000 .. 2031 (KWP 2000)

Start Communication

Service Request
Start Communication

Service Request

> 55ms 25ms 25ms < 50ms

(w/ Keyword)

Wake Up Fixed Bit Rate 10,4 kbit/s

K-Line

L-Line

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 5

The K-Line Bus

Protocol
Connection establishment (2 variants)

5 Baud init
– Master sends destination address (using 5 Bit/s)
– ECU answers: 0x55 (01010101), keyword low Byte, keyword high Byte

(with desired data rate)
– Master derives bit rate from pattern, sends Echo (inv. High Byte)
– ECU sends Echo (inv. Destination address)

Adress byte

> 300ms ~ 2s < 300ms < 20ms

5 Bit/s Fixed bit rate, chosen by ECU, detected and adopted by master

K-Line

L-Line

Keyword
LSB

Sync. Byte
55h

< 20ms

Inv. Keyword
MSB

Keyword
MSB

< 20ms < 50ms

Inverted
Adress byte

Adress byte

Tester ECU → Tester ECU → ECU Tester → ECU Tester →

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 6

The K-Line Bus

Protocol
Communication always initiated by master

Master sends Request, ECU sends Response
Addressing

Address length is 1 Byte
Either physical address (identifies specific ECU)
or logical address (identifies class of ECU)
e.g., engine, transmission, ...
Differentiated via format byte

Duration of single transmission at 10.4 kBit/s
best case: 250 ms, worst case 5.5s
i.e., application layer data rate < 1 KB/s

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 7

The K-Line Bus

Protocol header
Format Byte

Encodes presence and meaning of address bytes
Short packet length can be encoded in format byte; length byte then
omitted

Destination address
Source address
Length
Payload

Up to 255 Byte
First Byte: Service Identifier (SID)

Checksum
Sum of all Bytes (mod 256)

0 .. 7 8 .. 15
Format byte Destination

Source Length

Payload...

... Checksum

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 8

The K-Line Bus

Service Identifiers
Standard Service Identifiers

Session Initialization and teardown
– 0x81h Start Communication Service Request
– 0x82h Stop Communication Service Request

Configuring protocol timeouts
– 0x83h Access Timing Parameter Request (optional)

Other SIDs are vendor defined
Passed on (unmodified) to application layer
Typical use: two SIDs per message type

– First SID: Positive reply
– Second: Negative reply

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 9

The K-Line Bus

Error handling
If erroneous signal arrives

ECU ignores message
Master detects missing acknowledgement
Master repeats message

If invalid data is being sent
Application layer sends negative reply
Master / ECU can react accordingly

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 10

The K-Line Bus

Use in On Board Diagnostics (OBD)
OBD uses stricter protocol variant
Bit rate fixed to 10.4 kBit/s
No changes in timing
Header no longer variable

Length byte never included
Address always included

Max. Message length is 7 Byte
Shall use
logical addressing by tester,
physical addressing by ECUs

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 11

The CAN Bus

The CAN Bus
„Controller Area Network“ (1986)
Network topology: Bus
Two signal levels

low (dominant), high (recessive)
Up to 110 nodes

Limited by PHY layer
At 125 kBit/s: max. 500m

 μC
CAN

Controller

CAN_H

CAN_L

120 Ω 120 Ω

Transceiver

ECU 1 ECU 2 ECU n

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 12

The CAN Bus

The CAN Bus
ISO 11898

Low Speed CAN (up to 125 kBit/s)
High Speed CAN (up to 1 MBit/s)

Specifies OSI layers 1 and 2
Higher layers not standardized by CAN,
covered by additional standards and conventions
E.g., CANopen

Random access, collision free
CSMA/CA with Bus arbitration

Message oriented
Does not use destination addresses

Implicit Broadcast/Multicast

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 13

The CAN Bus

Physical layer (typical)
High Speed CAN

500 kBit/s
Twisted pair wiring

Branch lines max. 30 cm
Terminating resistor mandated (120 Ω)
Signal swing 2 V
Error detection must happen within one Bit’s time
⇨ bus length is limited:

ratedata

sMBitml /150 ⋅≤

3,5 V
2,5 V
1,5 V Wire 2

Wire 1

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 14

The CAN Bus

Physical layer (typical)
Low Speed CAN

Up to 125 kBit/s
Standard two wire line suffices
No restriction on branch lines
Terminating resistors optional
Signal swing 5 V

Single Wire CAN

83 kBit/s
One line vs. ground
Signal swing 5 V

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 15

CAN in Vehicular Networks

Bit Timing
Times derived from clock time (Quantum) TQ
Bit time Tbit consists of sync segment TSyncSeg, propagation
segment TPropSeg, phase segments TPhaseSeg1, TPhaseSeg2 (can be
adapted by controller for synchronization)
TSyncSeg+ TPropSeg must be longer than 2x propagation delay
Signal sampled between TPhaseSeg1 and TPhaseSeg2
Standard recommends, e.g. at 500 kbps, TQ = 125 ns, Tbit =16 TQ

TSyncSeg=1TQ TPhaseSeg2 = max 2TQ TPropSeg=1…8TQ TPhaseSeg1=1…8TQ

Bit begins Bit ends
Signal Sampled

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 16

CAN in Vehicular Networks

Address-less communication
Messages carry 11 Bit or 29 Bit message identifier
Stations do not have an address, Frames do not contain one
Stations use message identifier to decide whether a message is
meant for them
Medium access using CSMA/CA with bitwise arbitration
Link layer uses 4 frame formats
Data, Remote (request), Error, Overload (flow control)
Data frame format:

Header, 19 or 39 bit Payload, 0 … 64 bit Trailer, 25 bit ≥3 bit

Control
Bits

Bus
Idle

Start
Bit

11+1 or 29+3 Bit
Message Identifier 6 bit Data 0 . . . 8 Byte 15 bit

CRC
Acknowledge &
End of Frame

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 17

CAN in Vehicular Networks

CSMA/CA with bitwise arbitration (CSMA/CR)
Avoids collisions by priority-controlled bus access
Each message contains identifier corresponding to its priority
Identifier encodes “0” dominant and “1” recessive:
concurrent transmission of “0” and “1” results in a “0”
Bit stuffing: after 5 identical Bits one inverted Stuff-Bit is inserted
(ignored by receiver)
When no station is sending the bus reads “1” (recessive state)
Synchronization happens on bit level,
by detecting start bit of sending station

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 18

CAN in Vehicular Networks

CSMA/CA with bitwise arbitration (CSMA/CR)
Wait for end of current transmission

wait for 6 consecutive recessive Bits
Send identifier (while listening to bus)
Watch for mismatch between transmitted/detected signal level

Means that a collision with a higher priority message has occurred
Back off from bus access, retry later

Realization of non-preemptive priority scheme
Real time guarantees for message with highest priority

i.e., message with longest “0”-prefix

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 19

CAN in Vehicular Networks

CSMA/CA with bitwise arbitration (CSMA/CR)
Example (recall: “0” dominant, “1” recessive)

0 0 0 0 0 1 0 1 1 1 0 0 1 1 0

0 1 0 1 0 1

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 20

The CAN Bus

CSMA/CA with bitwise arbitration (CSMA/CR)
Client 2 recognizes bus level mismatch, backs off from access

Client 1 ╌┐┄┌───┐┄┄┄┌─┐┄
┄└─┘┄┄┄└───┘┄└─

Client 2 ╌┐┄┌───┐┄┄┄┌───
┄└─┘┄┄┄└───┘┄┄┄

Client 3 ╌┐┄┌───┐┄┄┄┌─┐┄
┄└─┘┄┄┄└───┘┄└─

Bus ╌┐┄┌───┐┄┄┄┌─┐┄
┄└─┘┄┄┄└───┘┄└─

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 21

The CAN Bus

CSMA/CA with bitwise arbitration (CSMA/CR)
Client 1 recognizes bus level mismatch, backs off from access

Client 1 ╌┐┄┌───┐┄┄┄┌─┐┄┌─────
┄└─┘┄┄┄└───┘┄└─┘┄┄┄┄┄

Client 2 ╌┐┄┌───┐┄┄┄┌─────────
┄└─┘┄┄┄└───┘┄┄┄┄┄┄┄┄┄

Client 3 ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└─

Bus ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└─

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 22

The CAN Bus

CSMA/CA with bitwise arbitration (CSMA/CR)
Client 3 wins arbitration

Client 1 ╌┐┄┌───┐┄┄┄┌─┐┄┌─────────
┄└─┘┄┄┄└───┘┄└─┘┄┄┄┄┄┄┄┄┄

Client 2 ╌┐┄┌───┐┄┄┄┌─────────────
┄└─┘┄┄┄└───┘┄┄┄┄┄┄┄┄┄┄┄┄┄

Client 3 ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄┄┄┌─
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└───┘┄

Bus ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄┄┄┌─
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└───┘┄

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 23

The CAN Bus

CSMA/CA with bitwise arbitration (CSMA/CR)
Client 3 starts transmitting data

Client 1 ╌┐┄┌───┐┄┄┄┌─┐┄┌────────────────────╌
┄└─┘┄┄┄└───┘┄└─┘┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄

Client 2 ╌┐┄┌───┐┄┄┄┌────────────────────────╌
┄└─┘┄┄┄└───┘┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄

Client 3 ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄┄┄┌─┬┬┬┬┬┬┬┬┬┬┬╌
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└───┘┄└┴┴┴┴┴┴┴┴┴┴╌

Bus ╌┐┄┌───┐┄┄┄┌─┐┄┌───┐┄┄┄┌─┬┬┬┬┬┬┬┬┬┬┬╌
┄└─┘┄┄┄└───┘┄└─┘┄┄┄└───┘┄└┴┴┴┴┴┴┴┴┴┴╌

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 24

The CAN Bus: TTCAN

Time-Triggered CAN (TTCAN)
ISO 11898-4 extends CAN by TDMA functionality
Solves non-determinism of regular CAN

Improves on mere “smart” way of choosing message priorities
One node is dedicated “time master” node
Periodically sends reference messages starting “basic cycles”
Even if time master fails, TTCAN keeps working

Up to 7 fallback nodes
Nodes compete for transmission of reference messages
Chosen by arbitration

Next Ref.
Message

Time
Window 1

Time
Window 2

Reference
Message

Basic cycle

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 25

The CAN Bus: TTCAN

TTCAN Basic Cycle
Basic cycle consists of time slots

Exclusive time slot
– Reserved for dedicated client

Arbitration time slot
– Regular CAN CSMA/CA with bus arbitration

Structure of a basic cycle arbitrary, but static
CAN protocol used unmodified
 Throughput unchanged

TTCAN cannot be seen replacing CAN for real time applications

Instead, new protocols are being used altogether (e.g., FlexRay)

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 26

The CAN Bus

Message filtering
Acceptance of messages determined by message identifier
Uses two registers

Acceptance Code (bit pattern to filter on)
Acceptance Mask (“0” marks relevant bits in acceptance code)

Bit 10 9 8 7 6 5 4 3 2 1 0

Acceptance Code Reg. 0 1 1 0 1 1 1 0 0 0 0

Acceptance Mask Reg. 1 1 1 1 1 1 1 0 0 0 0

Resulting Filter Pattern 0 1 1 0 1 1 1 X X X X

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 27

The CAN Bus

Data format
NRZ
Time synchronization using start bit and stuff bits (stuff width 5)
Frame begins with start bit
Message identifier 11 Bit (CAN 2.0A), now 29 Bit (CAN 2.0B)

0 7 8 15
SB

Identifier

Control Bits

Data

...

CRC

Acknowledge & End of Frame

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 28

The CAN Bus

Data format
Control Bits

Message type (Request, Data, Error, Overload)
Message length
...

0 7 8 15
SB

Identifier

Control Bits

Data

...

CRC

Acknowledge & End of Frame

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 29

The CAN Bus

Data format
Payload

Restriction to max. 8 Byte per message
Transmission time at 500 kBit/s: 260 μs (using 29 Bit ID)
i.e., usable data rate 30 kBit/s

0 7 8 15
SB

Identifier

Control Bits

Data

...

CRC

Acknowledge & End of Frame

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 30

The CAN Bus

Error detection (low level)
Sender checks for unexpected signal levels on bus
All nodes monitor messages on the bus

All nodes check protocol conformance of messages
All nodes check bit stuffing

Receiver checks CRC

If any(!) node detects error it transmits error signal

6 dominant Bits with no stuffing

All nodes detect error signal, discard message

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 31

The CAN Bus

Error detection (high level)
Sender checks for acknowledgement

Receiver transmits dominant “0”
during ACK field of received message

Automatic repeat of failed transmissions

If controller finds itself causing too many errors

Temporarily stop any bus access

Remaining failure probability ca. 10-11

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 32

The CAN Bus: Transport Layers

Not covered by ISO 11898 (CAN) standards
Fragmentation
Flow control
Routing to other networks

Add transport layer protocol
ISO-TP

ISO 15765-2
TP 2.0

Industry standard
…

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 33

The CAN Bus: ISO-TP

ISO-TP: Header
Optional: 1 additional address Byte

Regular addressing
– Transport protocol address completely in CAN message ID

Extended addressing
– Uniqueness of addresses despite non-unique CAN message ID
– Part of transport protocol address in CAN message ID,

additional address information in first Byte of TP-Header

1 to 3 PCI Bytes (Protocol Control Information)

First high nibble identifies one of 4 types of message
First low nibble and addl. Bytes are message specific

0 1 2 3 4 5 6 7

(opt) Addl.
Address

PCI
high

PCI
low (opt) Addl. PCI Bytes Payload

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 34

The CAN Bus: ISO-TP

ISO-TP: Message type “Single Frame”
1 Byte PCI, high nibble is 0
low nibble gives number of Bytes in payload
PCI reduces frame size from 8 Bytes to 7 (or 6) Bytes,
throughput falls to 87.5% (or 75%, respectively)
No flow control

0 1 2 3 4 5 6 7
(Address) 0 Len Payload

0 1 2 3 4 5 6 7
0 Len Payload

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 35

The CAN Bus: ISO-TP

ISO-TP: Message type „First Frame“
2 Bytes PCI, high nibble is 1
low nibble + 1 Byte give number of Bytes in payload
After First Frame, sender waits for Flow Control Frame

ISO-TP: Message type „Consecutive Frame“

1 Byte PCI, high nibble is 2
low nibble is sequence number SN (counts upwards from 1)

Application layer can detect packet loss
No additional error detection at transport layer

 0 1 2 3 4 5 6 7
(Address) 2 SN Payload

0 1 2 3 4 5 6 7
(Address) 1 Len Payload

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 36

The CAN Bus: ISO-TP

ISO-TP: Message type „Flow Control Frame“
3 Bytes PCI, high nibble is 3
low nibble specifies Flow State FS
FS=1: Clear to Send

Minimum time between two Consecutive Frames must be ST
Sender may continue sending up to BS Consecutive Frames,
then wait for new Flow Control Frame

FS=2: Wait
Overload
Sender must wait for next Flow Control Frame

Byte 2 specifies Block Size BS
Byte 3 specifies Separation Time ST

0 1 2 3
(Address) 3 FS BS ST

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 37

The CAN Bus: TP 2.0

TP 2.0
Connection oriented
Communication based on channels
Specifies Setup, Configuration, Transmission, Teardown

Addressing

Every ECU has unique logical address;
additional logical addresses specify groups of ECUs
for broadcast und channel setup:
logical address + offset = CAN message identifier
Channels use dynamic CAN message identifier

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 38

The CAN Bus: TP 2.0

TP 2.0: Broadcast
Repeated 5 times (motivated by potential packet loss)
Fixed length: 7 Byte
Byte 0:

logical address of destination ECU
Byte 1: Opcode

0x23: Broadcast Request
0x24: Broadcast Response

Byte 2, 3, 4:
Service ID (SID) and parameters

Byte 5, 6:
Response: 0x0000
No response expected: alternates between 0x5555 / 0xAAAA

0 1 2 3 4 5 6
Dest Opcode SID, Parameter 0x55 0x55

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 39

The CAN Bus: TP 2.0

TP 2.0: channel setup
Byte 0:

logical address destination ECU
Byte 1: Opcode

0xC0: Channel Request
0xD0: Positive Response
0xD6 .. 0xD8: Negative Response

Byte 2, 3: RX ID
Validity nibble of Byte 3 is 0 (1 if RX ID not set)

Byte 4, 5: TX ID
Validity nibble of Byte 5 is 0 (1 if TX ID not set)

Byte 6: Application Type
cf. TCP-Ports

 0 1 2 3 4 5 6
Dest Opcode RX ID V TX ID V App

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 40

The CAN Bus: TP 2.0

TP 2.0: channel setup (II)
Opcode 0xC0: Channel Request

TX ID: CAN msg ID requested by self
RX ID: marked invalid

Opcode 0xD0: Positive Response
TX ID: CAN msg ID requested by self
RX ID: CAN msg ID of original sender

Opcode 0xD6 .. 0xD8: Negative Response
Reports errors assigning channel (temporary or permanent)
Sender may repeat Channel Request

After successful exchange of Channel Request/Response:
dynamic CAN msg IDs now assigned to sender and receiver
next message sets channel parameters

0 1 2 3 4 5 6
Dest 0xC0 1 TX ID 0 App

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 41

The CAN Bus: TP 2.0

TP 2.0: set channel parameters
Byte 0: Opcode

0xA0: Channel Setup Request (Parameters for channel to initiator)
0xA1: Channel Setup Response (Parameter for reverse channel)

Byte 1: Block size
Number of CAN messages until sender has to wait for ACK

Byte 2, 3, 4, 5: Timing parameters
E.g., minimal time between two CAN messages

TP 2.0: misc. channel management and teardown
Byte 0: Opcode

0xA3: Test – will be answered by Connection Setup Response
0xA4: Break – Receiver discards data since last ACK
0xA5: Disconnect – Receiver responds with disconnect, too

 0 1 2 3 4 5
0xA0 BS Timing

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 42

The CAN Bus: TP 2.0

TP 2.0: Data transmission via channels
Byte 0, high nibble: Opcode

MSB=0 – Payload
– /AR=0 – Sender now waiting for ACK
– EOM=1 – Last message of a block

MSB=1 – ACK message only (no payload)
– RS=1 – ready for next message ( flow control)

Byte 0, low nibble
Sequence number

Bytes 1 .. 7: Payload

0 1 2 3 4 5 6 7
Op SN Payload

Opcode Nibble
0 0 /AR EOM

Opcode Nibble
1 0 RS 1

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 43

The LIN Bus

Local Interconnect Network (LIN)
1999: LIN 1.0
2003: LIN 2.0

Numerous extensions
Backwards compatible (only)

Goal of LIN: be much cheaper than low speed CAN
Only reached partway

specifies PHY and MAC Layer, API

LIN bus line

frame handler

Signal interaction Diagnostic

Application

API

Protocol

Physical

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 44

The LIN Bus

Very similar to K-Line Bus
Master-slave concept with self synchronization

no quartz needed
lax timing constraints

LIN master commonly also part of a CAN bus
LIN commonly called a sub bus

Bidirectional one-wire line, up to 20 kBit/s
Bit transmission UART compatible

1 Start Bit, 8 Data Bits, 1 Stop Bit

Message oriented
No destination address

Master
Function

Slave
Function

Slave
Function

Slave
Function

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 45

The LIN Bus

Rudimentary error detection
Sender monitors bus
Aborts transmission on unexpected bus state

No error correction
Starting with LIN 2.0: Response Error Bit

Should be contained in periodic messages
Set (once) if slave detected an error in last cycle

Static slot schedule in the master
“Schedule Table”
Determines cyclic schedule of messages transmitted by master
 Bus timing mostly deterministic
Slaves do not need to know schedule
 can be changed at run-time

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 46

The LIN Bus

Data request
Sync Break (≥13 Low Bits, 1 High Bit)

Not UART compliant  uniquely identifiable
Sync Byte 0x55 (01010101)

Synchronizes bit timing of slave
LIN Identifier (6 data Bits + 2 parity Bits)

Encodes response’s expected message type and length
0x00 .. 0x3B: application defined data types, 0x3C .. 0x3D: Diagnosis,
0x3E: application defined, 0x3F: reserved
Parity Bits: I0 ⊕ I1 ⊕ I2 ⊕ I4 and ¬ (I1 ⊕ I3 ⊕ I4 ⊕ I5)

Data request, sent by master

LIN
Identifier

Sync
Byte 55h Checksum Data

byte
Data

byte

Data response, sent by slave

Sync Break
≥ 13 bit

≥ 1 bit triggers Data Response Bus Idle

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 47

The LIN Bus

Data response
Slave responds with up to 8 Bytes of data

LSB first, Little Endian
length was defined by LIN Identifier

Frame ends with checksum
LIN 1.3: Classic Checksum (only data bytes)
LIN 2.0: Enhanced Checksum (data bytes + Identifier)
Checksum is sum of all Bytes (mod 256),
plus sum of all carries

Data request, sent by master

LIN
Identifier

Sync
Byte 55h Checksum Data

byte
Data

byte

Data response, sent by slave

Sync Break
≥ 13 bit

≥ 1 bit triggers Data Response Bus Idle

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 48

The LIN Bus

Types of requests
Unconditional Frame
Event Triggered Frame
Sporadic Frame
...

Unconditional Frame
Most simple frame type
Designed for periodic polling of specific data point
Exactly one slave answers
LIN is a single master system  timing of unconditional frames
fully deterministic
Sample use case:

Request “did state of front left door contact change?” every 15 ms
Receive negative reply by front left door ECU every 15 ms

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 49

The LIN Bus

Types of requests
Unconditional Frame
Event Triggered Frame
Sporadic Frame
...

Event Triggered Frame
Simultaneous polling of multiple slaves, slave answers if needed
Collisions possible ( non-determinism), detect by corrupt. data

master switches to individual polling via Unconditional Frames
Use whenever slaves unlikely to respond
Sample use case:

Request “did state of a door contact change?” every 15 ms
Change in state unlikely, simultaneous change extremely unlikely

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 50

The LIN Bus

Types of requests
Unconditional Frame
Event Triggered Frame
Sporadic Frame
...

Sporadic Frame
Sent (by master) only when needed
Shared schedule slot with other Sporadic Frames
Use whenever polling for specific data only seldom needed
If more than one Sporadic Frame needs to be sent, master needs
to decide for one  no collision, but still non-deterministic
Sample use case:

Request „power window fully closed?“ every 15 ms
...only while power window is closing

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 51

The LIN Bus

Doing Off-Board-Diagnosis of LIN ECUs
Variant 1: Master at CAN bus responds on behalf of ECU on LIN

Keeps synchronized state via LIN messages

Variant 2: Master at CAN bus tunnels, e.g., KWP 2000 messages
Standardized protocol
LIN dest address is 0x3C (Byte 1 is ISO dest address)
Dest ECU (according to ISO address) answers with address 0x3D
Independent of payload, LIN frame padded to 8 Bytes
LIN slaves have to also support KWP 2000
Contradicts low cost approach of LIN
“Diagnostic Class” indicates level of support

[C2X] Summer 2012 Protocols: K-Line, CAN, and LIN 52

Main Takeaways

Overall
Design goals
Message orientation vs.
address orientation,
Addressing schemes
Medium access
Flow control
Real time guarantees and
determinism

K-Line
Mainly for diagnostics
Transmission uses UART signaling
Communication using Request-
Response pattern

CAN
Still standard bus in vehicles
Message oriented
CSMA/CA with bitwise arbitration

Impact on determinism
TTCAN (TDMA)

Error detection
Transport layer: ISO-TP vs. TP 2.0

Flow control, channel concept

LIN
Goals
Deployment as sub bus
Message types and scheduling
Determinism

	Vehicular Networks [C2X]
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The K-Line Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	CAN in Vehicular Networks
	CAN in Vehicular Networks
	CAN in Vehicular Networks
	CAN in Vehicular Networks
	CAN in Vehicular Networks
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus: TTCAN
	The CAN Bus: TTCAN
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus
	The CAN Bus: Transport Layers
	The CAN Bus: ISO-TP
	The CAN Bus: ISO-TP
	The CAN Bus: ISO-TP
	The CAN Bus: ISO-TP
	The CAN Bus: TP 2.0
	The CAN Bus: TP 2.0
	The CAN Bus: TP 2.0
	The CAN Bus: TP 2.0
	The CAN Bus: TP 2.0
	The CAN Bus: TP 2.0
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	The LIN Bus
	Main Takeaways

